Control andmanipulation of microfluidic flow via elastic deformations
نویسندگان
چکیده
We utilize elastic deformations via mechanical actuation to control and direct fluid flow within a flexible microfluidic device. The device consists of a microchannel with a flexible arch prepared by the buckling of a thin elastic film. The deflection of the arch can be predicted and controlled using the classical theory of Euler buckling. The fluid flow rate is then controlled by coupling the elastic deformation of the arch to the gap within the microchannel, and the results compared well with analytical predictions from a perturbation calculation and numerical simulations. We demonstrate that placement of these flexible valves in series enables directed flow towards regions of externally applied mechanical stress. The simplicity of the experimental approach provides a general design for advanced functionality in portable microfluidics, self-healing devices, and in situ diagnostics.
منابع مشابه
Buckling of dielectric elastomeric plates for soft, electrically active microfluidic pumps.
Elastic instabilities, when properly implemented within soft, mechanical structures, can generate advanced functionality. In this work, we use the voltage-induced buckling of thin, flexible plates to pump fluids within a microfluidic channel. The soft electrodes that enable electrical actuation are compatible with fluids, and undergo large, reversible deformations. We quantified the onset of vo...
متن کاملNumerical Study of Droplet Generation Process in a Microfluidic Flow Focusing
Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...
متن کاملTwo-dimensional flow of foam around a circular obstacle: local measurements of elasticity, plasticity and flow
Abstract We investigate the two-dimensional flow of a liquid foam around circular obstacles by measuring all the local fields necessary to describe this flow: velocity, pressure, bubble deformations and rearrangements. We show how our experimental setup, a quasi-2D ”liquid pool” system, is adapted to the determination of these fields: the velocity and bubble deformations are easy to measure fro...
متن کاملNumerical Simulations of a Traveling Plane-Wave Actuator for Microfluidic Applications
Continuous forming and propagation of large planar deformations on a thin solid elastic film can create propulsion when the film is immersed in a fluid. Microscopic organisms such as spermatozoa use similar mechanisms to propel themselves. In this work, we present a numerical analysis of the effect of traveling plane-wave deformations on an elastic-film actuator within a fluid medium inside a c...
متن کاملThree-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
As an emerging alternative to the conventional counterpart, surface microfluidics incorporates both intrinsic resistive solid-liquid and elastic frictionless gas-liquid interfaces, leading to unique flow-pressure characteristics. Furthermore, the open-surface microfluidic platforms can be fabricated on a monolithic substrate with high wettability contrast by the previously reported one-step lit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013